Session: MF-02-02 Materials for hydrogen service II (Joint with C&S)
Paper Number: 62944
Start Time: Tuesday, July 13, 2021, 05:00 PM
62944 - Effect of Internal Hydrogen on Fatigue Crack Initiation Sites in 316L Austenitic Stainless Steel
Internal hydrogen can influence the fatigue life, crack growth rate, and crack morphology of austenitic stainless steel, but little is known about the effect of internal hydrogen on fatigue crack initiation sites. To determine the effect of internal hydrogen on the microstructural fatigue crack initiation sites, the location of small fatigue cracks was evaluated with respect to the microstructural features in notched middle tension M(T) 316L specimens both with and without pre-charged hydrogen. The notches of the M(T) specimens were electropolished prior to fatigue testing to facilitate post-test analysis. Fatigue tests were performed with the same constant load amplitude and an R-ratio of 0.1 for specimens with and without internal hydrogen. The fatigue tests were interrupted after a minimal amount of cracking was detected using the direct current potential difference (DCPD) technique. The microstructural locations of the small fatigue cracks were then evaluated with scanning electron microscopy imaging and electron backscatter diffraction (EBSD). Several small transgranular fatigue cracks initiated in the notches of specimens both with and without internal hydrogen. These transgranular cracks intersected grain boundaries and did not follow the prominent slip traces. There was no discernible effect of hydrogen on the microstructural sites of fatigue crack initiation in 316L.
Presenting Author: Brian Kagay Sandia National Laboratories
Authors:
Brian Kagay Sandia National LaboratoriesJoseph Ronevich Sandia National Laboratories
Chris San Marchi Sandia National Laboratories
Effect of Internal Hydrogen on Fatigue Crack Initiation Sites in 316L Austenitic Stainless Steel
Category
Technical Paper Publication